“What Happened to my Models?” History-Aware
Co-Existence and Co-Evolution of
Metamodels and Models

Marcel Homolka
ISSE - Johannes Kepler University Linz
Linz, Austria
marcel.homolka@jku.at

Wesley K. G. Assungdo
North Carolina State University
Raleigh, USA
wguezas @ncsu.edu

Abstract—Metamodels like many other software artifacts, are
expected to evolve and exist in different versions. Consequently,
the instances of these metamodels (models), become invalid and
need fixing. The usual strategy for this is adapting models
based on changes made to the metamodels, i.e., co-evolution.
However, co-evolution usually adopts an all-or-nothing strategy
that overlooks three important aspects: (a) preserving the history
of the metamodel, (b) preserving the model’s history before the
co-evolution, and (c) supporting models to co-exist for different
metamodel versions and delay their co-evolution. These aspects
lead to problems for maintaining models in practice since often
co-evolution gets driven by customer needs, e.g., the customer
decides when to update. In this paper, we propose a novel
approach that allows the creation of a metamodel version and
records the history of metamodels and models by adopting an
operation-based infrastructure. These metamodel versions allow
engineers to delay the co-evolution of certain models by having
co-existing metamodel versions. This notion of co-existence, in
addition to the operation-based infrastructure, helps to preserve
the complete history of metamodel and models, i.e., the history
before and after co-evolving a model. To evaluate our approach,
we conducted an empirical study, where we co-evolved models of
varying domains. The results show that our approach correctly
records the history of the metamodel and model. Furthermore,
we measured the performance during co-evolution while having
all versions co-existing in the same space. It shows that in the
worst case, our approach required 887.91 seconds to co-evolve a

model with more than 88,000 elements and 2,000,000 properties.
Index Terms—metamodel versioning and maintenance, meta-

model evolution, model co-evolution, recording history

I. INTRODUCTION

Metamodels are software artifacts that are widely used
in various industries and fields [1]-[3]. They are commonly
employed in Model-Driven Engineering (MDE) to describe
complex domains [4], [5]. These metamodels define the struc-
ture of models, i.e., the properties a model should have and
how they relate to other parts of the domain. The relationship
between a metamodel and the model is similar to the one
between a class and its instance, where each model is an
instance of a particular metamodel [5], [6].

Luciano Marchezan
ISSE - Johannes Kepler University Linz
Linz, Austria
lucianomarchp @gmail.com

Alexander Egyed
ISSE - Johannes Kepler University Linz
Linz, Austria
alexander.egyed @jku.at

Like any other software artifact, a metamodel changes
over time, as shown in empirical studies on domain-specific
languages (DSLs) [7]. However, changes made to a metamodel
directly affect all its models. As a result, models that do not
conform to the new metamodel become invalid and need to be
updated, i.e., evolved. The usual strategy to fix models is by
co-evolution [8]-[18]. Co-evolution is the process of adapting
models according to the changes made to their metamodel to
maintain a model’s consistency to the metamodel over its lifes-
pan [15]. In the field of co-evolution, most research focuses
on two strategies. They either focus on (a) assisting engineers
during the co-evolution process [12], [13] or (b) trying to solve
the co-evolution by fully automating it [8]-[10], [17], [18].
The limitation both strategies have in common is that they
usually do not take the previous version of the model and
the metamodel into account. Existing co-evolution approaches
often consider the previous versions of the metamodel and
models as irrelevant or unimportant artifacts that get discarded
after the co-evolution is complete. Consequently, the entire
history of the models, e.g., changes over time, are lost.

The all-or-nothing strategy described above, however, leads
to three main issues. First, incomplete history of metamodels.
In existing approaches, recording the metamodel history is
seen as an afterthought, as previous versions get just dis-
carded [19]. However, a recent survey with modeling engineers
has shown that one of the most requested features of modeling
tools is to allow engineers to compare and create versions of
models and metamodels [20]. This finding highlights the need
for a systematic way of recording the metamodel evolution.
Second, incomplete history of models. Similar to the previous
issue, the history of models is usually lost after the co-
evolution, since the old metamodel version gets discarded [3].
However, this leads to problems in which the model’s history
prior to the co-evolution gets lost, thus making it challenging
to recover previous changes made to the model, which other-
wise are used to maintain the model [21], [22]. Third, forced
co-evolution. Co-evolution usually gets applied to all models.

©2024 1EEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works. DOI: 10.1109/ICSME58944.2024.00027

https://orcid.org/0009-0008-5429-2068
https://orcid.org/0000-0003-3096-580X
https://orcid.org/0000-0002-7557-9091
https://orcid.org/0000-0003-3128-5427
https://ieeexplore.ieee.org/document/10795045

However, there are instances where the co-evolution of models
is not feasible or recommended, e.g., due to incompatibility
with an older hardware/library or customer constraints [23].
In those cases, it should be possible to allow engineers to
delay or even prevent the co-evolution of subsets of models by
having them co-exist in the same environment as the evolved
models [11].

To address the limitations of existing work, we present a
novel approach that records the history of metamodels and
models during their co-evolution process while enabling mod-
els of different metamodel versions to co-exist. To achieve this,
changes made to the metamodels and models get recorded on
an operation-based chain. The changes between each version
get recorded to allow engineers to create different model
versions. These changes get used by engineers to access the
complete history of a metamodel and use this history to apply
automatic co-evolution strategies to their models. Additionally,
the operation chain stores the changes made to the model
without losing information during the co-evolution. Finally,
our approach enables the co-evolution of model subsets (partial
co-evolution) by having the metamodel versions co-exist in
the same environment, which is achieved by introducing a

versioning notation on the meta-metamodel layer.
To evaluate our approach, we performed two evaluations.

First, we focused on measuring the correctness of the recorded
history of metamodels. We have performed common evolution
changes on seven different metamodels. The results show that
our approach can record the applied refactorings correctly on
metamodels of varying domains and complexity. Second, our
evaluation focused on co-evolving models in a co-existing
system. Here, we measured whether the history of a model re-
mained intact after a co-evolution, i.e., the changes got applied
to the original model rather than a new model, and how the
co-existing system affects the performance of our approach.
We co-evolved 250 PlantUML and 1180 FHIR models with
our approach while having models of different versions co-
exist in the same environment. The result showed that during
the performed co-evolutions, all the models kept their history
intact, while overall, in the worst case, our approach required
887.91 seconds to co-evolve a model consisting of more than

80,000 elements and 2,000,000 properties.
The remainder of this paper is structured as follows: Sec-

tion II provides the background concepts and a motivational
example for our work. Section III describes our approach.
The evaluation of our approach is shown in Section IV
and discussion and implications are presented in Section V.
Section VI highlights work that is related to our approach.
Lastly, Section VII has the concluding remarks.

II. BACKGROUND AND MOTIVATION

In this section, we introduce a motivating example of an
evolving metamodel and a co-evolving model to highlight the
issues addressed in this paper. The example was adapted from
a related work on the technical debt of model evolution [11].
Figure 1 shows a metamodel (at the top) alongside its evolution
over time. This metamodel is used to create services that are
deployed on machines, allowing the creation of two model

elements, namely Service and Port. While Service
describes the running service on the machine, Port describes
the required ports. A port can be either of type InPort,
i.e., a port that handles incoming messages, or OutPort,
i.e., a port that is used to send messages. In Version I of
the metamodel, the Service component uses these ports via
inPort and outPort properties that contain the respective
ports. However, later on, it was decided to further simplify the
metamodel by merging the properties inPort and outPort
into a new property called ports, thus creating Version 2 of
this metamodel.

The importance of recording the metamodel history, e.g.,
for using it to co-evolve models, becomes apparent even with
simple metamodels, such as the one from Figure 1. Two
common approaches for recording the history are (i) state-
based and (ii) operation-based versioning [24]. State-based
approaches such as Git [25] store the state of an artifact and
derive the difference by comparing two different states. In
contrast, operation-based approaches like Eclipse Edapt [26]
represent changes as transformation operations performed on
a state to obtain a successor state.

Typically, state-based approaches are insufficient to extract
a complete history of an artifact, as demonstrated by a recent
study on extracting code refactorings from Git commits [27]
and studies on reconstructing metamodel changes [28], [29].
To emphasize this, we look at how inPort and outPort
have been merged into ports as this simple change poses
issues for state-based version control systems such as EMF
Compare [30]. EMF Compare is a tool to compare and merge
two different models and metamodels created in the Eclipse
Modeling Framework (EMF) [31]. While such tools would
often detect simple changes in the metamodel, such as the
addition or deletion of properties, more complex changes, like
the merging of properties, are often mislabeled. In the case of
the merge, tools such as EMF Compare would either detect
that both properties, i.e., outPort and inPort, were deleted
while a new property called ports was added (see (1) in
Figure 1), or they would detect that one of the properties,
i.e., outPort, was deleted, while the other, i.e., inPort,
was modified to match the definition of ports (see @). This
incomplete and incorrect history introduces many problems
in managing and maintaining the metamodel and models. In
particular, it often results in an incorrect model co-evolution.

The other strategy for recording the history is using
operation-based versioning. This strategy allows storing more
detailed information about changes. Recent studies in the field
of metamodel evolution are using such operations by providing
a refactoring catalog [8], [32] to assist engineers in the evo-
lution of metamodels. Some of these approaches even group
multiple operations into so-called Coupled Operations,
i.e., an operation that consists of multiple sub-operations, to
allow a more granular recording of the history [8], [33], [34].
However, such approaches can still face limitations if the
complete history is not preserved. For example, the bottom
part of Figure 1 (Model section) illustrates a simple event
logger service with two ports. One InPort called Events,

Version 1 Version 2
id:String id:String port:Ini
2 > .
£
]
k] [*] inPort
[*] outPort \—1 \—¢—1
=== === = ===
Change Reconstruction 1 . r_ g
. Event-Logger:Service 18 2
1 delete Property inPort i 1 1 g g‘ E
> |:"> . ports 1 8% %
O] 2 delete Property outPort 1 &5 5
1 =" 3
1 e @
3 add Property ports 1 1 ['4
1
e o e e e e e e e o e e - !
- Fmmmmmmm e m - .
° Event -Logger:Service Change Reconstruction 1 . i - <
3 g9 g Event-Logger:Service ' 3 ©
= _ —1 @ i 1 13 3‘5
inPort outPort #> 1 delete Property outPort 1 " 1 ES 2
— —, ports 1 S5 3
— 2 rename inPort to ports 1 . é’ T g
‘Events:lnPon‘ ‘Logs:OutPon‘ 1 Q 3
3 change type of ports from InPort to Port ' Events:InPort] 1 4
1
Event-Logger:Service °
® Actual Changes B
> . -
1 merge inPort and outPort into ports |:‘> ports sg
o 2
sT
---- Incorrect Model change type to Port
— Correct Model ‘Events:InPon‘ ‘ Logs:OutPort ‘ ®

Fig. 1. Motivating Example of a Metamodel describing a Service Architecture

where it receives events from different services. These events
get processed by the service and sent back as logs via the
OutPort called Logs. If a developer now uses the recovered
changes from @ as the basis for the co-evolution, both the
elements in inPort and outPort would be deleted, while
a new empty property called ports gets created (see co-
evolution (1) for the Event-Logger model). For the second case
(see metamodel history (2)), inPort would be transformed to
ports still containing the EventPort and outPort would
be deleted. While both of these co-evolved models are still
syntactically correct regarding Version 2 of the metamodel,
semantically they are different from before, thus impacting
the design and implementation of the co-evolved models.
This highlights the need for using the complete history as
a basis for co-evolving models (Limitation 1). For instance,
considering the complete history (see metamodel history @ in
Figure 1), both inPort and outPort are merged into the
new property called ports, thus ensuring that the evolved
model is semantically still the same.

Another issue with co-evolution approaches is their ten-
dency to generate a new model based on the existing one,
rather than adapting it. This results in the deletion of old mod-
els. Consequently, the model’s history until that point is lost,
making it difficult to restore the history. This also creates the
challenge of distinguishing between newly created models and
those that have co-evolved from previous versions, thus further
deteriorating the model’s history (Limitation 2). Another issue
of existing work is the all-or-nothing approach that forces all
models to co-evolve once the metamodel evolves (Limitation
3). There are situations, however, where models cannot be

co-evolved, e.g., due to constraints of specific customers or
incompatibility with an older hardware or library [23]. In such
situations, it should be possible to delay the co-evolution for
some models and allow these old models to co-exist in the

same environment as the evolved models.
These three limitations emphasize the importance of record-

ing a complete change history of the metamodel, using the
metamodel’s history to perform the co-evolution of models,
and allowing delayed co-evolution of these models. In the
next section, we present our approach, designed to address
these limitations.

III. PROPOSED APPROACH

The underlying principle of our approach is to allow
engineers to create metamodel versions, where the changes
made to these metamodels, i.e., metamodel refactoring, are
recorded. To achieve this, we based our approach on state-of-
the-art concepts regarding operation-based MDE versioning
infrastructures [35], [36]. In this infrastructure, artifacts are
described as elements containing properties. Changes to these
artifacts are then recorded via corresponding create, delete, and
update operations on these elements and their properties. These
operations can be grouped into Coupled Operations to
provide a more comprehensive history of a given element, i.e.,
model and metamodel.

We then adapted this meta-metamodel to allow the cre-
ation of metamodel versions and instantiate models of those
versioned metamodels, i.e., allowing co-existence between
different versions. Furthermore, the operation architecture is
defined with the notion of the Coupled Operations,i.e.,
multiple operations grouped, for recording a more granular

ony 01

PropertyType

name:string
_]"' -

cardinality:
[Single List,Set,Map]

Tm propertyType

M i fersion \, & (W) i 1

[1]instanceOf | InstanceType | [1-] propertyOf [*] propertyTypes

name:string
M [1] referenceType

deprecated:bool

['] supertypes /) ? ['] subtypes

Metamodel -
Layer

.
g [*] instances Instance [1] propertyOf [*] properties Properly
©

— name: string

name: string

value: object

Fig. 2. Meta-metamodel for versioned metamodels

history, which can then be used to automate the co-evolution
process. Details are presented next.

A. Our meta-metamodel

The proposed meta-metamodel, illustrated in Figure 2,
consists of two layers. The first layer, called the Metamodel
Layer, is used to describe metamodels, while the other layer,
called Model Layer, describes the models that conform to
the previously defined metamodel. The Metamodel Layer has
two elements called PropertyType and InstanceType.
In it, InstanceType describes the structure of a model
element, i.e., what properties/features the given model element
will have, whereas PropertyType is used to define the
structure of a given property. A PropertyType contains
multiple fields, e.g., the cardinality field defines whether
the property is a List, Set, Map or a Single property. On
the Model Layer, there are two elements called Instance
and Property. Here, an Instance describes a given
model element, e.g., the Event-Logger Service from our
motivating example, where its field instanceOf points to
the corresponding InstanceType of a given model element.
A Property, on the other hand, describes the properties
of an element and it is used to store the given value of
the property. The Property references its corresponding
PropertyType via propertyType.

Figure 3 illustrates how Version 1 of the service meta-
model and the Event-Logger model presented in our moti-
vational example (Figure 1) get represented using our meta-
metamodel. It shows that on the Metamodel Layer, four
InstanceTypes were created, three for the ports, i.e., Port,
InPort, and OutPort, and one type for the Service.
The property propertyTypes of Service contains two
PropertyTypes, one for the inPort and one for outPort.
Both are Set properties, as defined by cardinality, that
only allow instances of InPort or OutPort, i.e., see the
association referenceType between PropertyType and In-
stanceType. On the Model Layer, we can see the Event-Logger
(bottom of Figure 3). Here, an instance called EventLogger
was created. It is of the InstanceType Service and has
two properties called outPort and inPort, as seen in the
field properties. The outPort is of the PropertyType
OutPort and contains Logs, while the inPort is of type
InPort and has Events inside. Both the Events and
Logs are instances of their respective type, i.e., InPort
and OutPort. It is important to note that this is only the

propertyType

OutPort: PropertyType
cardinaltiy = SET

referencedType

Port
InstanceType

InsanceType
instanceOf

InstanceType
linstanceOf

Service: propertyOf _propertyTypes

InstanceType

InPort: PropertyType |referencedType
cardinaltiy = SET

propertyType

Metamodel Layer

instanceOf

instances, instances,

value
[€ L¢
value

Fig. 3. Service metamodel and model created with our meta-metamodel

inPort:Property
instances

EventLogger:Instance | PropertyOf properties
—>< outPort:Property |

Model Layer

internal representation for metamodel and models. Engineers
would still see and use the simplified version of models and
metamodels, similar to the one from the motivating example,
rather than the complete representation shown here.

B. Versioning Principle

Figure 2 highlights the elements of our meta-metamodel that
get used for the versioning of metamodels created with our
approach, i.e., the underlined elements in InstanceType
and PropertyType. The properties previousVersion
and nextVersion point to the predecessor and successor
versions of a given type, whereas the initialVersion
points to the first version of a given type. The versioning
mechanism works as follows. During the creation of a new
type, the previousVersion and nextVersion are set
tonull and initialVersion points to the newly created
type. Now engineers can modify the given type. When they
are satisfied with the current state of the type, they can set
this version to released by setting the boolean isReleased
to true. Now, this version is locked and cannot be modified
anymore, which allows the creation of instances of this type.
When engineers want to adapt a type, i.e., evolve it, they
need to create a new version from it. This means that the
type’s current state is used as the base for the new version.
For InstanceTypes it would also mean that it still reuses
the PropertyTypes from the old version to remove du-
plication of types. The newly created version is set as a
successor, i.e., nextVersion, of the old version, and the
old version is set as the predecessor of the new version,
i.e., previousVersion. Finally, there is also the property
deprecated which warns the user that no new instances of
this type should be created. To demonstrate our approach, we
show how the versioning mechanism is used for the service
metamodel, as seen in Figure 4. Creation of Version 1:
Here, the initial version of the service metamodel is created.
This version is the same as shown in Figure 3. At first, an
engineer would create the IntanceTypes for the Service
and the different ports, i.e., InPort, OutPort and Port.
As mentioned before, the field initialVersion points
to the first version of a given type and is used to help to
distinguish between different types. In this version, the created
types would also be their initialVersion, since they
are the first version created. Afterwards, all PropertyTypes,
i.e., outPort and inPort, are created and added to the
Service. Finally, this version is released and all the created

initialVersion \

Service(Version 1):
| InstanceType

isLocked = true

| Version1 | previousversion : Port(Version1): :|
H superType InstanceType

inPort(Version1):
PropertyTyp

cardinality = SET

isLocked = true

InPort(Version): :
InstanceType . |

propertyTypes referenceType

isLocked = true

| outPort(Version1) : OutPort(Version1): istocked = true . |

“PropertyType InstanceType
l cardinality = SET
isLocked = true

p
isLocked = true '
referenceType ’

previousVersion : '
S e O A

nextVersion

nextVersion ports(Version2):

PropertyType

: Service(Version 2):
: InstanceType isLocked = true
cardinality = SET

capacity = 2

isLocked = true

Fig. 4. Two co-existing metamodel versions

types are locked. Creation of Version 2: Here, outPort
and inPort get merged into a new PropertyType named
ports. Since ports is a type created by a merge, it has
both inPort and outPort as its previousVersions.
Next, a new version of Service is created. First, the current
state of the previous version of Service is copied by our
approach and set as the second version, still referencing the
old PropertyTypes. This allows one to adapt the PropertyTypes
by replacing the old types from the propertyType field
and adding their new versions, i.e., replacing inPort and
outPort with ports. Furthermore, this demonstrates how
the approach reuses parts of the metamodel from the previous
iterations to help reduce the complexity and size of the meta-
model. Here, the current version reuses InPort, OutPort
and Port from Version 1 since no changes have been
made to them (notice that Version 1 and Version 2 have
overlapping elements in Figure 4).

C. Operation chain

To record the history of the metamodel and its mod-
els, we use an operation chain, i.e., a list of operations,
that describes changes performed in the metamodels and
models. Each operation from the chain represents a change
that only affects a single property at a time. Additionally,
these operations are also reversible, i.e., they allow engi-
neers to restore previous states in the chain by inverting
the operation. Each has a unique ID, a predecessor and
a successor operation to allow easy traversal through the
chain. All elements from the metamodels and models, i.e.,
Instance, InstanceTypes and PropertyTypes, are
recorded as elements on the chain, where an element is
described as an object that can have multiple properties.
Figure 5 shows the currently supported operations that get
recorded on the chain. These are ElementCreate, i.e.,
creation of a new element, ElementDelete, i.e., dele-
tion of an element, and ElementUpdate, i.e., an ele-
ment has been modified. ElementUpdates are opera-
tions that describe that Properties have been created
(PropertyCreate), deleted (PropertyDelete) or mod-
ified (PropertyUpdate). A Property can be updated by
either setting new values for it (Update), removing values

| Operation ElementUpdate PropertyUpdate <} Update |
ElementCreate | PropertyCreate | Add |
ElementDelete | PropertyDelete | Remove |

Fig. 5. List of supported Operations

(Remove), adding new values (Add), renaming the property
(Rename), or changing its type (ChangeType).

Due to the atomic nature of operations, it is difficult to track
complex changes, similar to state-based comparison tools, e.g.,
detecting the merging of properties. For that, we expanded the
operation chain with the notion of Coupled Operations.
They are defined as a group of operations that are grouped
together. Those Coupled Operations can be labelled
to allow the recording of a more complete change history,
which in turn can then be used as a basis for co-evolving
the corresponding models. This grouping and labeling of the
operations can be performed either manually by an engineer or
automatically by applying predefined refactorings, e.g., create
property, merge property, etc. To show how this operation
chain and Coupled Operation work, Figure 6 provides
a simplified operation chain based on the changes made in the
motivating example, i.e., the changes made to the Service
element.

The operation chain starts with the creation of the first
version of the Service type as shown in operations (1) -
(5) in Figure 6 and Table I. First, an InstanceType named
Service is created (operation (1)). Next, the PropertyType
inPort is created (operation (2)) and added to Service
as a propertyType (operation @). Similar to inPort,
outPort is also created and added (operations (4) and (5)).
Those operations are then grouped together into Coupled
Operation (see Table II) and labeled as the creation of
the Service type. Later, the initial version of Service is
released (operation @), and a second version of Service is
created (operation (7)). The modification to the second version
of the Service type, i.e., merging inPort and outPort
into ports, can be seen in Operations -(5). They show
that a property ports has been created and how inPort
and outPort were removed. Those operations already show
that just having a simple operation-based structure is not
enough to record the history of a metamodel because they
are prone to be interpreted differently without further context,
e.g., see the motivating example. However, to mitigate it, these
operations are grouped into a Coupled operation as a
merge refactoring (see Coupled Operation), which
allows us to use the structured refactorings to automatically
co-evolve the models according to the changes made to the
metamodel.

D. Using Refactorings from the chain to co-evolve models

This section shows how Coupled Operations can
automate the co-evolution process. For that, we look again

DOOO®

D=

1
'
' release :
'

" ' '
.Create Service ,. IZ' . greate . .IZlmerge inPortand | :IE Servive
"""""""" 'release " ervice OutPort into ports | ' Vers. 2 1
! Service ' \ Vers2. |\ P Ty
"'i"i R TR w e

')

use history to co-evolve

GO D DIOIDY DD

'
' ' : ' QO Operation

. \

1 o Create E ' 7 Co-Evolve Event- E

' Event- ' ! Logger H (> Coupled Operation
! Logger ! . !

Fig. 6. Operation chain of types (metamodels) and instances (models)

TABLE I
OPERATIONS SHOWN IN FIGURE 6

ID | Operation* | Element | Name | Kind | Value
0 E. Create InstanceType | Service
@ E. Create PropertyType | inPort
e P. Update Service propertyTypes | ADD | inPort
e E. Create PropertyType | outPort
e P. Update Service propertyTypes | ADD | outPort
(6) | P. Update Service isReleased SET | true
a E. Create InstanceType | Service 2
[E. Create PropertyType | ports [[
@ P. Update Service 2 propertyTypes | REM | inPort
(14) | P. Update Service 2 propertyTypes | REM | outPort
@ P. Update Service 2 propertyTypes | ADD | ports
@ P. Update Service 2 isReleased SET | true
m E. Create Service Event-Logger
@ P. Create Event-Logger | inPort
@ P. Create Event-Logger | outPort
@ P. Update Event-Logger | inPort ADD | Events
@ P. Update Event-Logger | outPort ADD | Logs
@ P. Create Event-Logger | ports
@ P. Update Event-Logger | ports ADD | Logs
@ P. Update Event-Logger | ports ADD | Events
@ P. Delete Event-Logger | inPort
@ P. Delete Event-Logger | outPort

P. Update Event-Logger | instanceOf SET | Service 2
*E. = Element; P. = Property

at our example shown in Figure 6. First, we see that
Coupled Operation @ creates the Event-Logger
Service from our motivating example. Then, the inPort
and outPort of the event logger are set (operations @ and
(24)), and it gets decided to co-evolve the model into the second
version of Service (Coupled Operation).

For that, the function coEvolveInstanceTo gets called,
(see Algorithm 1), by providing the model and the given type
to which the model should be co-evolved, i.e., Service
(2). The function coEvolveInstanceTo first checks if
the provided type is a successor version from the model’s type
(line 2). Afterwards, all the TypeRefactorings, i.e., all
the Coupled Operations of the given type are extracted
and used to co-evolve the instance. This is done by iterating
over all the type TypeRefactorings of instanceType
and calling their perspective coEvolve method. In the case
of a merge, coEvolve gets called. This function defines

TABLE 11
COUPLED OPERATIONS SHOWN IN FIGURE 6

| Label | Operations
Create Service @ - @
Release Service @

Create Service Version 2

SIS
@

Service 2: merge inPort and outPort into ports

Release Service Version 2

Create Event-Logger

e
®E

Co-evolve Event-Logger into Service Version 2

lo]a]]=]~]-]8

Algorithm 1 Co-Evolving an Instance

1: function COEVOLVEINSTANCETO(instance, instanceType)
if instanceType.previousVersions.contains(instance.instanceType) then
creation = instanceType.createOperation; > Start of refactorings of the type
release = instanceType.releaseOperation; > End of refactorings of the type
current = creation;
while current != release do
current.coEvolve(instance); > Execute the co-evolution of the refactoring
current = current.nextOperation;

instance.instanceType = instanceType;

SO RXIDIUNEWN

11: function COEVOLVE(instance)

12: Property a = instance.getProperty(typeA);
13: Property b = instance.getProperty(typeB);
14: Property merged = instance.createProperty(mergedType);

> Example of the merge co-evolution

15: for value in a.getValues() do
16: merged.add(value); > add all values from a into the merged property
17: for value in b.getValues() do
18: merged.add(value); > add all values from b into the merged property

19: a.delete();
20: b.delete();

> delete and remove property a
> delete and remove property b

how a merge refactoring, is handled by our approach. First,
a new property from the merged PropertyType is created
(line 14). The values of both the previous properties, i.e.,
inPort and outPort, get extracted and added to the
new property (operations and 27) from Figure 6 and
Table I), and then both previous properties are deleted and
removed from the instance (operations and (29)). Finally,
the instanceType is set to the new version, (line 9 and
operation (30)), and the previously generated operations are
grouped together into a new Coupled Operation to show
that these changes were triggered by a co-evolution from the
user. Since the co-evolution of an element gets grouped as
a Coupled Operation, this also allows us to record co-
evolution changes on the operation chain.

IV. EVALUATION AND RESULTS

To evaluate how our proposed approach addresses the three
limitations presented in Section II, we conducted a study

guided by three research questions (RQ):
RQ1: Can the proposed approach record various types of

metamodel changes to provide a complete history?
Over their lifespan metamodels are the target of various

types of changes that can be difficult to detect, for example,
the merging of two properties or splitting a property. It is,
therefore, necessary to evaluate to what extent our approach
can record and group different types of evolution changes
together. To answer this, we rely on a catalog of well-

known metamodel refactorings from related works [8], [37].
These refactorings are applied to metamodels across various
domains, where we extract the operations generated by the
refactoring process to determine if our approach correctly

groups the operations as intended.
RQ2: To what extent can the change history of models be

preserved during co-evolution?
The history of a metamodel is an integral part of model

co-evolution. However, those models have a history before
the co-evolution, which is a necessary source of information
for understanding their current state and maintaining them. In
this RQ, we assess how our approach preserves the history
of models when those undergo automatic co-evolution due to
an evolving metamodel. For that, we perform automatic co-
evolution of models from different domains and check whether
the evolution is performed on the original model rather than
on a copy of the model, i.e., no new models get created during

the co-evolution.
RQ3: To what extent is the performance of our approach

impacted by the co-existence of multiple metamodel ver-

sions and their corresponding models?
Our approach is based on an operation-based infrastructure,

that captures and stores every fine-grained change as an oper-
ation. Having multiple metamodels and their models stored as
operations might lead to bottlenecks, reducing the applicability
of our approach in the industry. This RQ focuses on evaluating
the runtime performance of our approach when dealing with

many models from different metamodel versions.
To answer these research questions, the evaluation was

conducted in two different layers (parts) corresponding to
the layers in our meta-metamodel, namely the metamodel
layer and the model layer. For the metamodel layer, we
measured the general applicability of recording changes made
to metamodels with our approach, i.e., RQ1. For the model
layer, we evaluated the automatic co-evolution and the support
for co-existence with our approach, i.e., RQ2 and RQ3. We
performed the evaluation on an Ubuntu machine with 32GB
RAM and an i7-13700F, where we limited the tool’s RAM
usage to 8GB. All data used for this evaluation, i.e., the used
metamodels, models, the created operations and additional
results are available in our online appendix [38].

A. Metamodel Layer - Evaluation

For the first evaluation, seven different metamodels of
varying sizes, domains and complexity were chosen: one based
on the CAEX standard [39], one for behavior engineering [40],
one used to analyze process models created with Eclipse Sir-
ius [41], one about process-oriented modeling concepts [42],
one based on the EMF implementation of UML [43], a
metamodel based on the PlantUML [44] notion of an activity
diagram and one metamodel that is used in the medical field
(FHIR) [45]. Both PlantUML and FHIR were also used for
RQ2 and RQ3 respectively. The size and complexity of the
used metamodels can be seen in Table III. It shows that
the medical metamodel is the most complex consisting of
229 InstanceType and 1,318 PropertyTypes (457 are attributes
and 861 are references), while the smallest metamodel is the

TABLE III
COMPLEXITY AND DOMAINS OF THE METAMODELS USED IN RQ1

Metamodels Domain #IT #PT #Attributes #References
CAEX [39] Factory 34 93 38 55
Textbt [40] Psychology 30 40 23 17
SimQRi [41] Risk Assement 32 60 40 20
Dbl [42] SDL 165 148 24 124
EMF-UML [43] Modeling 309 821 276 545
Activity Diagram* [44] Modeling 17 18 3 15
FHIR* [45] Medical 229 1318 457 861

IT. = Instance Types; PT. = Property Types
Attributes contain primitive values; References contain other instances
* Both of these metamodels were also used to evaluate RQ2 and RQ3

TABLE IV
OPERATIONS CREATED BY PROPERTYTYPE REFACTORINGS (RQ1)

Change E.Create P.Create Update Add Remove time[ms]
Merge 0 0 0 2 4 0.06
Split 0 0 0 4 2 0.06
Move 0 0 0 2 2 0.07
Create 1 17 8 2 0 0.87
Remove 0 0 0 0 2 0.16
Rename 0 0 1 0 0 0.09
Change Cardinality 0 0 1 0 0 0.03
Change Type 0 0 1 0 0 0.65

E. = Element; P. = Property
All numbers reflect the minimum, average and maximum values
The time shows the worst case to process a refactoring

activity diagram based on PlantUML consisting of only 17
InstanceTypes and 18 PropertyTypes.

To evaluate RQ1, we created a refactoring catalog, based on
the ones proposed by Bettini et al. [8] and Herrmannsdoerfer
et al. [37]. We adapted those catalogs to fit the notation of our
proposed meta-metamodel, by combining related refactorings,
e.g., rename attribute and rename reference were merged into
rename property. The refactorings for properties now consist
of the following: create, delete, rename, merge, split, move,
change cardinality and change type of PropertyTypes. We
have applied these changes to the metamodels from Table III.
For PlantUML and FHIR, we made more systematic changes
to the metamodel (see evaluation of RQ2 and RQ3), while for
the others we applied each refactoring twenty times to random
parts of the metamodel. During this process, we recorded the
changes, i.e., operations, applied to the metamodels and the
time spent to perform these operations, to evaluate whether our
approach can correctly group the operations as refactorings.
To collect our results, we iterated over each of the generated
refactorings, i.e., Coupled Operations, and counted the
different operations, i.e., the operations from Figure 5. After-
wards, we grouped each Coupled Operation according
to their type from the refactoring catalog, i.e., create, merge,
split, etc. We then collected a summary for each of those
groups and the time required to perform them.

RQ1: Recording the Metamodel History: The results can
be seen in Table IV, showing the aggregated operations
performed by each of the different refactorings from our
catalog. The rows show the different types of refactorings
for PropertyTypes, e.g., merging of two properties or
moving a property, while the columns show the different oper-

ations performed by the refactorings, i.e., ElementCreate,
PropertyCreate etc, and their performance. It is important
to note that each of the columns for the refactoring shows
the minimum, average and maximum number of operations
found as one number since the standard deviation for each
of those different operations is zero, i.e., all metrics are the
same. Furthermore, we can see, how the different refactorings
were applied. If we look at, for example, the merge and
split, it shows that both are reversed. Here, the merge creates
four Remove operations, i.e., two for each PropertyType
that got removed and two adds, i.e., for the added merged
PropertyType, while the split refactoring is the opposite.
In addition to that, all of the applied refactorings took less than
0.9ms to get executed by our prototype, implying that grouping
these operations takes little time. Considering these results,
we can conclude that our approach was able to correctly
record and group those operations generated by the different
refactorings.

Answering RQ1: Our approach can record all the applied
refactorings correctly, as shown by the fact that the
standard deviation over the different operations is zero for
each type of refactoring applied. Furthermore, applying
these refactorings does not consume much time, since the
worst case execution of a refactoring only took 0.87ms.

B. Model Layer - Evaluation

For the second part of the evaluation, we used the PlantUML
and FHIR metamodels and imported models that needed to
be co-evolved. First, we created a metamodel based on Plan-
tUML’s specification of activity diagrams, to which we added
changes from our catalog (see the provided online repository
for a more detailed look at the applied changes [38]). For
FHIR, we implemented the DSTU2 [46] specification and its
successor version STU3 [47]. In addition, we also created a
synthetic successor version of DSTU2 where we extended the
STU3 version with changes from our catalog, that were absent
during the evolution from DSTU2 and STU3, e.g., merging or
splitting of properties. To retrieve PlantUML models (activity
diagrams), we mined GitHub repositories using Pydriller [48].
Next, the models were streamlined by removing any duplicates
and any model that was invalid. In total, we found 250 models
of different sizes and with varied complexity(Table V). For
instance, the average number of properties ranges from 30 to
690, and the number of references from 6 to 138. Afterwards,
the models got imported into our approach, where they were
co-evolved one after the other into the next version. For
FHIR, we used synthetically generated patient data from the
Synthea open-source project [49]. The downloaded models are
in version DSTU2 of the FHIR format and consist of 1180
different models, i.e., see Table V. Here, the average number of
properties per model ranged from 4,344 to 2,135,184 while the
number of references ranged from 1,267 to 622,762. Similar
to PlantUML, the models were imported and co-evolved into

the STU3 version and our synthetic version.
RQ2: Recording the Model History during Co-Evolution:

To assess RQ2, we evaluated if the history of models remained

TABLE V
SIZE OF THE MODELS USED FOR RQs 2-3

Avg. Median Min Max StD.
Plant UML (250 Models)
Instances 31.09 19 6 138 26.28
Properties 155.44 95 30 690 131.4
Primitive Properties 124.35 76 24 552 105.12
Reference Properties 31.09 19 6 138 26.28
Elements in Reference* 31.08 19 6 138 26.33
FHIR (1180 Models)
Instances 2,588 1,548 181 88,966 5,691
Properties 62,111 37,152 4,344 2,135,184 136,585
Primitive Properties 43,995 26,316 3,077 1,512,422 96,748
Reference Properties 18,115 10,836 1,267 622,762 39,837
Elements in Reference* 41,929 24434 2,715 1,423,456 91,743

* The number of elements a model contained over all its reference properties

TABLE VI
CREATED OPERATIONS DURING A MODEL CO-EVOLUTION (RQ2)

Co-Evolution Avg. Max StD. E.Create* E.Delete*
PlantUML - hybrid 282.24 1,173 241.48 0 0
FHIR DSTU2 - STU3 8,281.11 294,136 20,661.03 0 0
FHIR DSTU2 - synthetic 12,950.27 480,145 29,811.16 0 0

E. = Element; * Min, Average and Max number of operations

intact after the co-evolution. To do this, we retrieved the co-
evolutions performed over each model and grouped them.
Similar to the previous evaluation, the number of different
operations performed by each co-evolution was collected.
Here, we wanted to determine whether our approach applies
the changes directly to the model and thus does not create any
new elements, i.e., the previous history gets preserved. Table
VI shows the aggregated results with the average number of
operations, the standard deviation, and the minimum, average
and maximum for ElementCreate and ElementDelete
operations. Again, for both deletes and creates, the standard
deviation and the average are zero, which shows that no new
elements are created but that all old model elements were
adapted into the newer version.

Answering RQ2: The results show that our approach
preserves the history of a model before its co-evolution
by updating previous elements instead of creating new
ones, i.e., ElementCreate operations.

RQ3: Performance of Co-existence: To assess the perfor-
mance of co-existence, we measured the time required to co-
evolve a model during the co-evolution. Additionally, while
performing the evaluation we kept the last 100 imported and
co-evolved models in memory to show that our approach can
handle co-existing model versions. This was also done to
observe if there is an impact on the performance when co-
evolving model. We performed this experiment three times
for each model and used the worst results for the evaluated
time. Overall there was little spread between the different
experiments. Table VII shows the extracted metrics for the
co-evolution of the PlantUML and FHIR models. The results
show that in the worst case, the co-evolution of a PlantUML
model took around 13 seconds and generated 1,173 change

TABLE VII
RUNTIME (S) FOR THE CO-EVOLUTION OF AN IMPORTED MODEL (RQ3)

Avg. Median Min Max StD.
PlantUML - hybrid 1.81 099 0.02 13.41 2.36
FHIR DSTU2 - STU3 6.36 256 0.14 552.00 2331
FHIR DSTU2 - synthetic =~ 9.47 3.61 0.18 88791 36.75

operations, while for a FHIR model, it took around 887.91
seconds and generated 480,145 change operations.

Answering RQ3: The results show that it is possible to
perform an automatic co-evolution, in a system with co-
existing models within a reasonable time frame. While
in the worst case, the co-evolution took 887.91 seconds
for FHIR, it can be argued that this is still a reasonable
time frame for large and complex models, i.e., models
containing more than 80,000 instances and 2,000,0000
properties, because co-evolution is only triggered once
per model for each new version of the metamodel.

C. Threats to Validity

This section discusses threats to validity and how we
mitigated them based on [50]. The set of refactorings used
is an internal threat since they might impact the evaluation
results. For RQ1, we mitigated this threat by basing our
catalog on well-known refactorings from related works [8],
[37] that were empirically evaluated before. For RQs 2 and
3, we mitigate this threat by co-evolving models of different
complexity multiple times and considering the worst cases.
Furthermore, large and complex models, i.e., see Table V,
were used. An external threat is related to the generaliza-
tion of our results to other model domains. For RQI1, we
tried to mitigate this threat by using seven metamodels of
varying sizes, complexity and domains. In RQs 2 and 3, we
used models from different domains, namely design modeling
(PlantUML) and medical (FHIR) to mitigate this problem.
Furthermore, the generalization for the Model Layer can
also be inferred from the obtained results of RQ1 since these
results showed that the refactorings applied, created the same
operations for each metamodel. A conclusion threat is the
refactorings applied to the metamodels since the changes were
applied to random parts of the metamodel. We mitigate this
threat by applying changes occurring between the DSTU2 and
STU3 specifications of FHIR to have real-world refactorings
used in metamodels during the evaluation.

V. DISCUSSION AND IMPLICATIONS

In this section, we discuss the implications of our work.
Extensibility of the approach: Our approach allows easy
extension to other modeling tools (e.g., EMF or Visio). The
only requirement to achieve this is implementing a parser that
transforms the original representation to the one supported
by our meta-metamodel. For that, it should be possible to
transform the original representation into a property-value
schema (which is the basis for our meta-metamodel).

Decision making: By recording the complete history of
models and metamodels, alongside the support of co-existing
versions and automatic co-evolution, our approach can help
engineers make informed decisions for the maintenance and
evolution of models and metamodels. As evidenced by the
evaluation results, our approach supports a large number of
co-existing models (RQ3) while still preserving the history
of the metamodel and its models (RQ1 and RQ2). This
means that the approach allows engineers to delay the co-
evolution of models, without having any significant perfor-
mance impact (RQ3’s results). The evaluation also evidences
that it is possible to co-evolve a model using the metamodel’s
history while still preserving the model’s history. However,
currently, our approach can only be applied when the history
of the metamodels is recorded from the beginning inside our
prototype. Thus, our implementation of the approach is limited
to scenarios where the history is recorded or reapplied (by
an engineer) within our approach. In future work, we plan
to address this issue by providing a way to reconstruct the
history based on previous versions of metamodels and models.
Tool Performance: As evidenced by the evaluation results,
our tool managed to maintain multiple co-existing metamodel
versions. The implemented prototype showed that it allows
engineers to delay the co-existence of models, without having
any significant performance impact. One current limitation
is that we have not yet measured the maximum number of
supported concurrent versions. However, since the number
of concurrently supported metamodels is often much more
limited than the number of loaded models, it should not be
considered an issue. Furthermore, the goal of our tool was
to show the principle usability of the proposed approach.
In future work, we plan to further improve the prototype’s
performance by only loading the currently needed parts of the
metamodel or models into memory, i.e., lazy loading.

VI. RELATED WORK

This section shows an overview of related work on meta-
model evolution, model co-evolution and metamodel version-
ing. To the best of our knowledge, no related work exists,
which tries to address all of the problems highlighted in this
paper (see Table VIII for a summary of the comparison).
However, some studies address related aspects:

One of the most commonly used software to store the
history of artifacts is Git [25]. It allows one to store infor-
mation about a model’s history on a textual diff-based level.
However, this recorded history is limited as shown by recent
work [27]. Furthermore, it does not support automated co-
evolution of artifacts. Another tool is Eclipse Edapt [26],
which records changes made to an EMF metamodel. The
changes can be used to automatically co-evolve models. How-
ever, Edapt does not allow co-existence and preserving the
model history. Koegel et al. [33] presents an approach focused
on recording the history of a model by storing EMF models
and their history in an operation-based repository. For that,
they created an operations-based change-tracking, that records
the changes performed on the EMF-model-element level. Their

TABLE VIII
SUMMARY OF RELATED WORK

Approach | Metamodel Changes | Model Changes | Co-evolution | Co-existence | Versioning Type | Representation
Git VCS [25] O S O S State-based Textual
Eclipse Edapt [26] o O o O Operation-based | EMF
EMF-Store [33] O o @) @) Operation-based | EMF
Khelladi et al. [28] @ O @) @) Operation-based* | EMF
Vermollen et al. [29] ® O O O Operation-based* | EMF
Kehrer et al. [51] O ® O O Operation-based EMF
Refactoring Catalog [8] [J O o O Operation-based | Custom
In-Between Versions [11] @ O o @ State-based EMF
Concurrent Versions [52] ® O] ® State-based EMF
COPE** [34] o @ o O Operation-based | EMF
Getir et al.** [53] O ® ® O Operation-based Custom
Herac et al. [35] ® @ @) @) Operation-based Custom
Mantz et al. [17] O O (] @) State-based Graph
Demuth et al. [18] O O [) O Operation-based EMF
Our approach ‘ ® ‘ o ‘ (] ‘ o ‘ Operation-based | Custom

O Not covered; (<] Partially covered; [] Fully covered. ;* reconstructs Coupled Operations; ** records only the co-evolution

work, however, only focuses on recording the model’s history,

overlooking the metamodel.
There are studies that focus on recovering the history of

a metamodel. The work by Khelladi et al. [28] focuses on
recovering complex changes, i.e., Coupled Operations
from simple operations. The work by Vermollen et al. [29]
recovers changes by comparing two state-based versions of a
metamodel. Both studies, however, only focus on the meta-
model’s history. Moreover, as mentioned in both studies, this
recovery is only an estimate of the correct history and should
not be seen as the definitive recording of this history, due
to a level of uncertainty in the recovered history. Similar to
them, the work from Mantz et al. [17] proposes an approach
that allows engineers to transform models and their corre-
sponding metamodel in a graph-based structure, where they
can adapt the metamodel changes manually into graph-based
transformation rules. That would allow them to automatically
co-evolve the corresponding models. However, similar to other
approaches this one does not store the changes made to the

model and does not support co-existing metamodel versions.
On the other hand, the work from Bettini et al. [8] provides

an extensive and executable refactoring catalog. It allows
engineers to adapt any metamodel using the refactorings from
this catalog. These refactorings also work on an operation-
based level and allow one to automatically co-evolve models.
Their work, however, only focuses on recording the history
of the metamodel and using this history to co-evolve models.
They do not mention any support for having multiple versions
co-existing or having a recorded history of the models. Nev-
ertheless, their work provides a highly extensive refactoring
catalog, on which we based the catalog used in our evaluation.
Di Ruscio et al. [11] proposes a tool to minimize technical
debt during the metamodel evolution by creating an in-between
version of two metamodel versions. This in-between version
can be considered a union of both versions. Here, properties
are declared as deprecated, when they are deleted or removed
during the next iteration to help engineers find technical debt
in the metamodel. This allows all models to be co-evolved

into the new version instead of having multiple versions co-
exist. However, similar to previous work, it only focuses on

co-evolving models and does not record their history.
The work of Cicchetti et al. [52], [54] focuses on concurrent

versioning of metamodels and the problems that can occur
when multiple engineers are working on the same version
in the same environment. They solve this issue by using
a Difference metamodel that gets created based on a given
metamodel. This Difference metamodel is then used to store
the changes made to this metamodel, which are then merged
into the concurrent versions. Another study that focuses on
model co-evolution and recording of the history is the work
of Herrmannsdoerfer et al. [34]. Their work proposes to
record the changes made to the metamodel and the model as
Coupled Operations in a History model. The changes
performed to the metamodel are recorded as a History model,
which can then be used to co-evolve any given model. This
History model is then also used to store the changes made to
the model during the co-evolution. While their work attempts
to record the changes made to the metamodel, they only focus
on recording the changes made during the co-evolution, rather
than over its entire lifespan. Similar to other related work,
their work does not allow co-existing metamodel versions.
Similar to that is also the work of Getir et al. [53], which
proposes a tool that records the history of previous co-evolved
models to assist the user during the model co-evolution.
The study from Kehrer et al. [51] focuses on visualizing
and grouping the changes made to models as user-level edit
operations to give a better overview of those changes. Finally,
the work from Demuth et. al. [18] focuses on automatically
co-evolving models via consistent change propagation, where
they immediately co-evolve the corresponding models after
a change gets applied to a metamodel instead of bundling
multiple changes together into a new version.

In summary, while these studies all address aspects of our
work (or at least partially address them), none attempt to
solve all of these problems at once. In addition, none of these
papers have yet focused on co-existing metamodel versions.

Table VIII provides an overview of the related work pre-
sented in this section. It shows the supported aspects of each
of the related works. The column Metamodel Changes
shows the support for recording changes to metamodel, while
Model Changes shows the support for recording the model
history. Co-Evolution shows which approach supports
the automatic co-evolution of a model from one version to
another, while the column Co-Existence shows the related
work that partially covers something similar to co-existence.
Finally, there is Versioning Type, which shows how the
changes are recorded and Representation, which tells
how metamodels or models get represented in this approach.
As shown in the comparison, our approach is novel since
it is the first to completely support co-existence, as well as
supporting all other features that are valuable for the field of
metamodels and models maintenance and (co-)evolution.

VII. CONCLUSION AND FUTURE WORK

In this paper, we present a novel approach that supports
recording a complete and correct history of metamodels and
models while allowing for different metamodel and model
versions to co-exist. Furthermore, our approach allows models
to be automatically co-evolved by using the history of the
metamodel while keeping the model’s history preserved. This
is achieved by introducing a versioning notation on the meta-
metamodel layer and using CoupleOperations to group
multiple co-evolution operations, which opens the door for
new research opportunities. The labelling of operations allows
engineers to differentiate between automatic co-evolutions and
manual co-evolutions performed by an engineer or general
changes made to the model. In addition, co-existence allows
engineers to concurrently work on multiple metamodel ver-
sions that are merged later or even evolve in parallel. Our
evaluation showed that our approach supports co-existence of
metamodel versions without impacting the performance. Addi-
tionally, our prototype allows us to store the changes made to
metamodels and models correctly. For future research, we plan
to extend our approach to allow reconstructing the history of
a metamodel. We also plan to introduce a refactoring catalog
on the model layer similar to the metamodel refactorings to
allow a more granular recording of the model history.

VIII. DATA AVAILABILITY
The evaluation’s artifacts and detailed results are available
in an online repository [38].

IX. ACKNOWLEDGMENTS

This research has been funded by the Austrian Science
Fund (FWEF, P31989-N31) and the FFG-COMET-K1 Center
“Pro’Future” (881844).

REFERENCES

[1] N. Medvidovic, D. S. Rosenblum, D. F. Redmiles, and J. E. Robbins,
“Modeling Software Architectures in the Unified Modeling Language,”
ACM Trans. Softw. Eng. Methodol., vol. 11, no. 1, p. 2-57, jan 2002.

[2] J. Hutchinson, J. Whittle, M. Rouncefield, and S. Kristoffersen, “Empir-
ical assessment of MDE in industry,” in 33rd International Conference
on Software Engineering (ICSE), 2011, pp. 471-480.

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

D. Akdur, V. Garousi, and O. Demirors, “A survey on modeling and
model-driven engineering practices in the embedded software industry,”
Journal of Systems Architecture, vol. 91, pp. 62-82, 2018.

D. C. Schmidt, “Model-driven engineering,” Computer, vol. 39, 2006.
M. Brambilla, J. Cabot, and M. Wimmer, Model-driven software engi-
neering in practice. Morgan & Claypool Publishers, 2017.

A. Wasowski and T. Berger, Domain-Specific Languages: Effective
modeling, automation, and reuse. Springer, 2023.

H. S. Borum and C. Seidl, “Survey of established practices in the life
cycle of domain-specific languages,” in 25th International Conference on
Model Driven Engineering Languages and Systems (MODELS), 2022,
pp. 266-277.

L. Bettini, D. Di Ruscio, L. Iovino, and A. Pierantonio, “An executable
metamodel refactoring catalog,” Software and Systems Modeling, vol. 21,
no. 5, pp. 1689-1709, 2022.

W. Kessentini, H. Sahraoui, and M. Wimmer, “Automated meta-
model/model co-evolution: A search-based approach,” Information and
Software Technology, vol. 106, pp. 49-67, 2 2019.

W. Kessentini and V. Alizadeh, “Semi-automated metamodel/model co-
evolution: a multi-level interactive approach,” Software and Systems
Modeling, vol. 21, pp. 1853-1876, 10 2022.

D. D. Ruscio, A. D. Salle, L. Tovino, and A. Pierantonio, “A modeling
assistant to manage technical debt in coupled evolution,” Information
and Software Technology, vol. 156, p. 107146, 4 2023.

W. Kessentini and V. Alizadeh, “Interactive Metamodel/Model Co-
Evolution Using Unsupervised Learning and Multi-Objective Search,” in
23rd ACM/IEEE International Conference on Model Driven Engineering
Languages and Systems (MODELS). ACM, 2020, p. 68-78.

W. Kessentini, M. Wimmer, and H. Sahraoui, “Integrating the designer
in-the-loop for metamodel/model co-evolution via interactive computa-
tional search,” in 2/th ACM/IEEE International Conference on Model
Driven Engineering Languages and Systems (MODELS), 2018, pp. 101—
111.

G. Wachsmuth, “Metamodel adaptation and model co-adaptation,” in
European conference on object-oriented programming. Springer, 2007,
pp. 600-624.

L. Tovino, A. Di Salle, D. Di Ruscio, and A. Pierantonio, “Metamodel
Deprecation to Manage Technical Debt in Model Co-Evolution,” in
23rd ACM/IEEE International Conference on Model Driven Engineering
Languages and Systems: Companion Proceedings. ACM, 2020.

M. Ohrndorf, C. Pietsch, U. Kelter, L. Grunske, and T. Kehrer, “History-
based model repair recommendations,” ACM Transactions on Software
Engineering and Methodology (TOSEM), vol. 30, no. 2, pp. 1-46, 2021.
F. Mantz, G. Taentzer, Y. Lamo, and U. Wolter, “Co-evolving meta-
models and their instance models: A formal approach based on graph
transformation,” Science of Computer Programming, vol. 104, pp. 2-43,
2015.

A. Demuth, R. E. Lopez-Herrejon, and A. Egyed, “Co-evolution of
Metamodels and Models through Consistent Change Propagation.” in
ME@ MoDELS, 2013, pp. 14-21.

R. Hebig, D. E. Khelladi, and R. Bendraou, “Approaches to Co-
Evolution of Metamodels and Models: A Survey,” IEEE Transactions
on Software Engineering, vol. 43, pp. 396414, 5 2017.

M. Ozkaya and D. Akdur, “What do practitioners expect from the meta-
modeling tools? A survey,” Journal of Computer Languages, vol. 63, p.
101030, 2021.

M. Ohrndorf, C. Pietsch, U. Kelter, L. Grunske, and T. Kehrer, “History-
Based Model Repair Recommendations,” ACM Trans. Softw. Eng.
Methodol., vol. 30, 1 2021.

L. Marchezan, W. K. Assuncao, R. Kretschmer, and A. Egyed, “Change-
Oriented Repair Propagation,” 2022.

G. K. Michelon, W. K. G. Assuncdo, P. Griinbacher, and A. Egyed,
“Analysis and Propagation of Feature Revisions in Preprocessor-based
Software Product Lines,” in IEEE International Conference on Software
Analysis, Evolution and Reengineering (SANER), 2023, pp. 284-295.
M. Koegel, M. Herrmannsdoerfer, J. Helming, and Y. Li, “State-based
vs. operation-based change tracking,” in 12th International Conference
Model Driven Engineering Languages and Systems, vol. 9, 2009.

Git. Git. [Online]. Available: https://git-scm.com/

Eclipse-Foundation. Eclipse-Edapt. [Online]. Available: https://projects.
eclipse.org/projects/modeling.emft.edapt

F. Niu, W. K. Assuncao, L. Huang, C. Mayr-Dorn, J. Ge, B. Luo,
and A. Egyed, “RAT: A Refactoring-Aware Traceability Model for
Bug Localization,” in 2023 45th International Conference on Software
Engineering (ICSE). IEEE, 2023.

https://git-scm.com/
https://projects.eclipse.org/projects/modeling.emft.edapt
https://projects.eclipse.org/projects/modeling.emft.edapt

(28]

[29]

[30]
[31]

(32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

D. E. Khelladi, R. Hebig, R. Bendraou, J. Robin, and M.-P. Gervais,
“Detecting complex changes during metamodel evolution,” in 27th In-
ternational Conference on Advanced Information Systems Engineering.
Springer, 2015, pp. 263-278.

S. D. Vermolen, G. Wachsmuth, and E. Visser, “Reconstructing complex
metamodel evolution,” in International Conference on Software Lan-
guage Engineering. Springer, 2011, pp. 201-221.
Eclipse-Foundation. EMF-Compare. [Online]. Available: https://eclipse.
dev/emf/compare/

Eclipse-EMF. [Online]. Available: https://projects.eclipse.org/
projects/modeling.emf.emf

E. Cherfa, S. Mesli-Kesraoui, C. Tibermacine, S. Sadou, and
R. Fleurquin, “Identifying Metamodel Inaccurate Structures During
Metamodel/Constraint Co-Evolution,” in 2021 ACM/IEEE 24th Interna-
tional Conference on Model Driven Engineering Languages and Systems
(MODELS). 1EEE, 2021, pp. 24-34.

M. Koegel and J. Helming, “EMFStore: a model repository for EMF
models,” in 32nd ACM/IEEE International Conference on Software
Engineering (ICSE): Volume 2, 2010, pp. 307-308.

M. Herrmannsdoerfer, “COPE-A Workbench for the coupled evolution
of metamodels and models,” in International conference on software
language engineering. Springer, 2010, pp. 286-295.

E. Herac, W. K. G. Assungdo, L. Marchezan, R. Haas, and A. Egyed,
“A flexible operation-based infrastructure for collaborative model-driven
engineering,” J. Object Technol., vol. 22, no. 2, pp. 2:1-14, 2023.

M. Homolka, L. Marchezan, W. K. Assun¢do, and A. Egyed, ““Don’t
Touch my Model!” Towards Managing Model History and Versions
during Metamodel Evolution,” in Proceedings of the 2024 ACM/IEEE
44th International Conference on Software Engineering: New Ideas and
Emerging Results, 2024, pp. 77-81.

M. Herrmannsdoerfer, S. D. Vermolen, and G. Wachsmuth, “An ex-
tensive catalog of operators for the coupled evolution of metamodels
and models,” in Software Language Engineering: Third International
Conference, SLE 2010, Eindhoven, The Netherlands, October 12-13,
2010, Revised Selected Papers 3. Springer, 2011, pp. 163-182.

M. Homolka, L. Marchezan, W. K. G. Assuncdo, and A. Egyed, “ICSME
2024 Research Track: "What Happened to my Models?” History-Aware
Co-Existence and Co- Evolution of Metamodels and Models,” Jul.
2024. [Online]. Available: https://doi.org/10.5281/zenodo.10925952

T. Mayerhofer, M. Wimmer, L. Berardinelli, and R. Drath, “A model-
driven engineering workbench for CAEX supporting language cus-
tomization and evolution,” IEEE Transactions on Industrial Informatics,
vol. 14, no. 6, pp. 2770-2779, 2017.

[40]

[41]

[42]

[43]
[44]

[45]
[40]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

T. Myers, “TextBE: A textual editor for behavior engineering,” in
Proceedings of the 3rd Improving Systems and Software Engineering
Conference (ISSEC), 2011.

C. Ponsard, Q. Boucher, and G. Ospina, “SimQRi-A Query-oriented
Tool for the Efficient Simulation and Analysis of Process Models.” in
2nd International Workshop on Executable Modeling, 19th ACM/IEEE
International Conference on Model Driven Engineering Languages and
Systems (MODELS), 2016, pp. 38—40.

A. Blunk and J. Fischer, “Prototyping SDL Extensions,” in 8th Inter-
national Conference on System Analysis and Modeling: Models and
Reusability. Springer, 2014, pp. 304-311.

Eclipse-Foundation. Eclipse-MDT-UML2. [Online]. Available: https:
/Iprojects.eclipse.org/projects/modeling. mdt.uml2

PlanmtUML-Team. PlantUML. [Online]. Available: https://plantuml.
com

H. International. FHIR. [Online]. Available: https://hl17.org/thir/

——. FHIR DSTU2 Summary. [Online]. Available: https:/www.hl7.
org/thir/DSTU2/summary.html

——. FHIR STU3 Summary. [Online]. Available: https://www.hl7.org/
fhir/STU3/summary.html

D. Spadini, M. Aniche, and A. Bacchelli, “PyDriller: Python framework
for mining software repositories,” in 26th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the
Foundations of Software Engineering. ACM, 2018, pp. 908-911.
Syhntea-Team. Syhntea. [Online]. Available: https://synthetichealth.
github.io/synthea/

C. Wohlin, P. Runeson, M. Host, M. C. Ohlsson, B. Regnell, and
A. Wesslén, Experimentation in software engineering. Springer Science
& Business Media, 2012.

T. Kehrer, U. Kelter, M. Ohrndorf, and T. Sollbach, “Understanding

model evolution through semantically lifting model differences with
SiLift,” in 2012 28th IEEE International Conference on Software Main-

tenance (ICSM). 1EEE, 2012, pp. 638-641.

A. Cicchetti, F. Ciccozzi, and T. Leveque, “A Solution for Concurrent
Versioning of Metamodels and Models.” J. Object Technol., vol. 11,
p- 1, 2012.

S. Getir, M. Rindt, and T. Kehrer, “A Generic Framework for Analyzing
Model Co-Evolution.” in ME@ MoDELS. Citeseer, 2014, pp. 12-21.
A. Cicchetti, F. Ciccozzi, T. Leveque, and A. Pierantonio, “On the con-
current versioning of metamodels and models: challenges and possible
solutions,” in 2nd International Workshop on Model Comparison in
Practice, 2011, pp. 16-25.

https://eclipse.dev/emf/compare/
https://eclipse.dev/emf/compare/
https://projects.eclipse.org/projects/modeling.emf.emf
https://projects.eclipse.org/projects/modeling.emf.emf
https://doi.org/10.5281/zenodo.10925952
https://projects.eclipse.org/projects/modeling.mdt.uml2
https://projects.eclipse.org/projects/modeling.mdt.uml2
https://plantuml.com
https://plantuml.com
https://hl7.org/fhir/
https://www.hl7.org/fhir/DSTU2/summary.html
https://www.hl7.org/fhir/DSTU2/summary.html
https://www.hl7.org/fhir/STU3/summary.html
https://www.hl7.org/fhir/STU3/summary.html
https://synthetichealth.github.io/synthea/
https://synthetichealth.github.io/synthea/

	Introduction
	Background and Motivation
	Proposed Approach
	Our meta-metamodel
	Versioning Principle
	Operation chain
	Using Refactorings from the chain to co-evolve models

	Evaluation and Results
	Metamodel Layer - Evaluation
	Model Layer - Evaluation
	Threats to Validity

	Discussion and Implications
	Related Work
	Conclusion and Future Work
	Data Availability
	Acknowledgments
	References

